Undriving Climate Change: The Benefits of An E-Bike Rebate Program

TRB 103rd Annual Meeting, Washington DC, January 2024 Aditi Misra, Anna Henderson, Manish Shirgaokar, and Wesley Marshall

BACKGROUND

The transportation sector is one of the largest contributors of greenhouse gas emissions in the United States. While climate friendly transportation modes like electric bicycles (e-bikes) continue to gain popularity, the high initial cost often remains a hurdle. Some states, cities, and local organizations have started e-bike rebate programs in order to promote mode shift.

In 2022, Denver's Office of Climate Action, Sustainability, and Resiliency (CASR) launched an income-based e-bike **incentive pilot program**. Elements of the program included:

-Point-of-sale e-bike vouchers, eligible at trusted brick and mortar bike shops within five miles of Denver.

-Standard e-bike rebates of \$300; e-cargo bike qualified for an additional \$200.

-Income-qualified rebates of \$1200 for residents enrolled in a program meant to support low-income residents, like Medicaid.

By the end of it's first year, the program saw significant success. The City of Denver had:

-Spent **\$4.7 million** to provide vouchers to **4,734** residents.

-Engaged **30 local bike shops** to participate.

-Distributed 49% of vouchers and 67% of funding to income-qualified residents.

The high demand for Denver's rebate program offers researchers the opportunity to study and improve the environmental and equitable outcomes of future programs.

Image: CASR

RESEARCH QUESTIONS

Did the program enable low-income and minority populations in Denver to acquire an e-bike?

Did buying an e-bike lead to mode shift?

If a mode shift occurred, across which modes and for whom did this happen?

DATA AND METHODS

SURVEY DATA

-At the end of 2022, CASR distributed a survey to e-bike rebate redeemers and had 958 respondents. -The survey asked questions on the following topics, among others:

- -Frequency of trips by mode (e.g., gas-powered vehicles, bicycles, walking, transit) before and after purchasing the e-bike.
- -Estimated reduction in average trip miles by gas powered vehicles.
- -Whether they would have bought an e-bike if the rebate voucher would not have been made available.
- -Household income, age and gender

METHODS

1. Exploratory Analysis

We conducted a series of one-way ANOVA tests to identify intergroup variability across age, gender, and income. There were significant differences across the following:

-Age and income groups on purchase decision if a rebate was not offered. -Age, income, and gender in automobile mode replacement frequency. -Gender and income groups for public transit and bicycling trips respectively.

2. Latent Class Analysis

We used a latent class model (LCM) with covariates to identify which socio-demographic groups were likely to purchase an e-bike without the rebate or replace their automobile trips with an e-bike.

-Categorical variables: age, gender, income, and race/ethnicity

-Covariate for purchase decision: decision to purchase or not -Covariate for mode replacement: Whether or not the respondent selected "less often" for that specific mode

SURVEY FINDINGS

Role of th -Three per

-Forty-thre an e-bike.

-Fifty-sever the rebate

Average⁻ -Respond vehicle tra

-Low-incor weekly veh

other class.

	Class 1	Class 2	Class 3
Age			
Below 30	0.0815	0.5599	C
30-41	0.4834	0.265	0.1988
41-50	0.194	0.1196	0.0956
Above 50	0.2411	0.0555	0.7056
Gender			
Male	0.5978	0.4894	0.5697
Female	0.3892	0.4013	0.3986
Other	0.013	0.1093	0.0316
Race			
White	0.8288	0.7056	0.5829
Hispanic	0.0416	0.167	0.1864
Multiracial	0.0431	0.0598	0.0203
Asian/Pacific Islander	0.0349	0.0083	0.025
African American/Black	0.0104	0.0414	0.0377
Other	0.0411	0.0179	0.1477
Income			
Income below \$25,000	0	0.2778	0.5805
\$25,001-50,000	0.0726	0.3194	0.326
\$50,001-75,000	0.135	0.2667	0.0071
\$75,001-100,000	0.1221	0.1361	0.0864
\$100,000+	0.6703	0	(
Estimated class	0.5276	0 3902	0.002
population shares	0.3270	0.3002	0.0922
Class 2/1			
С	oefficient Std.	t value	$\Pr(\geq t)$
Intercept)	0.0778 0.	1675 0.46	4 0.643
No Purchase without rebate	-0.93516 0.1	9278 -4.85	1 0.000

-Low-income and marginalized people, who would otherwise have difficulty purchasing an e-bike, benefitted from this rebate program.

-The **return on investment** for the e-bike rebate program was likely higher for low-income, marginalized groups.

-Marginalized people, whether financially, racially or by gender, more often used e-bikes as a replacement for their automobile compared to their high-income, White compatriots.

Schematic representation of latent class modeling with covariates

FINDINGS

Y FINDINGS	
ne Rebate in Purchase Decisions rcent (3%) would have bought an e-bike without the rebate.	Percent o
ee percent (43%) said the rebate acted as a nudge to buy	Gas vehi
en percent (57%) would not have bought an e-bike without e.	Conventional I
Trip Replacement ents replaced 3.4 round car trips and 22 miles of weekly avel.	Public tra
me respondents replaced 4.2 round trips and 30 miles of hicle travel.	V

LATENT CLASS MODEL FINDINGS

Puchase without Rebate

-Members of Class 1 were more likely to purchase an e-bike without a rebate.

-High income, white, 30-41-year-old males were more likely to be in Class 1 than in any

e resule	0.70010	0.12 - 70	11001	0.000	
	Coefficient	Std. error	t value	$\Pr(> t)$	
	-1.44354	0.38557	-3.744	0.000	
t rebate	-0.64291	0.40943	-1.57	0.117	

X²(3): 317.8894 (Chi-square goodness of fit)

Mode Replacement for Gas-Powered Vehicle -Members of Class 1 were less likely to replace gas-powered vehicle trips with e-bike trips.

-High income, white or Asian/Pacific Islander, **30-50 year old males** were more likely to be in Class ⁻

	Class 1	Class 2
Age		
Below 30	0.083	0.319
30-41	0.504	0.215
41-50	0.201	0.101
Above 50	0.21	0.3643
Gender		
Male	0.61	0.56
Female	0.378	0.4167
Other	0.0117	0.0774
Race		
White	0.832	0.67
Hispanic	0.0427	0.1687
Multiracial	0.0494	0.0341
Asian/Pacific Islander	0.0326	0.0193
African American/Black	0.0107	0.0386
Other	0.0414	0.0694
Income		
Income below \$25,000	0.0118	0.3693
\$25,001-50,000	0.0919	0.2839
\$50,001-75,000	0.0934	0.2238
\$75,001-100,000	0.1177	0.1229
\$100,000+	0.6852	0
Estimated class population shares	0.6057	0.3943

Fit for 2 latent classes: Class2/1

> Coefficient -0.01463 0.23909 -0.061

-0.58758 0.19999 -2.938 0.004

Use gas-powered vehicles less often

Sumber of observations: 877 Number of estimated parameters:

Residual degrees of freedom: 329

Maximum log-likelihood: -3889.026 AIC(2): 7838.051

(Intercept)

BIC(2): 7981.347 X²(2): 421.1804 (Chi-square goodness of fit)

CONCLUSIONS

of E-Bike Rebate Redeemers Who Reported Modal Reduction

Mode Replacement for Public Transit -Members of Class 1 were less likely to replace public transit trips with e-bike trips.

-Similar to the gas-powered vehicle model, highincome, white people were more likely to be in Class 1.

	Class 1	Class 2
Age		
Below 30	0.0843	0.3128
30-41	0.5011	0.2263
41-50	0.2025	0.1021
Above 50	0.212	0.3588
Gender		
Male	0.6065	0.5137
Female	0.3819	0.4103
Other	0.0116	0.076
Race		
White	0.8233	0.6758
Hispanic	0.0431	0.1649
Multiracial	0.0487	0.0355
Asian/Pacific Islander	0.034	0.0176
African American/Black	0.0106	0.038
Other	0.0404	0.0702
Income		
Income below \$25,000	0	0.3777
\$25,001-50,000	0.0859	0.2879
\$50,001-75,000	0.1018	0.2081
\$75,001-100,000	0.1153	0.1263
\$100,000+	0.697	0
Estimated class population	0.5055	0.4045
shares	0.5955	0.4043

		Std.	t	
	Coefficient	error	value	Pr(> t)
(Intercept)	-0.46366	0.18756	-2.472	0.014
Use public transit less often	0.11503	0.18364	0.626	0.532
Model diagnostics				
Number of observations: 877				
Number of estimated parameters: 30				
Residual degrees of freedom: 329				
Maximum log-likelihood: -3893.254				
AIC(2): 7846 508				

AIC(2): /846.508 BIC(2): 7989.803

Fit for 2 latent classes:

Class2/1

X^2(2): 420.5279 (Chi-square goodness of fit)

ACKNOWLEDGEMENTS

This work was supported by the University of Colorado Denver and the Mountain Plains Consortium, a University Transportation Center funded by the U.S. Department of Transportation.

We sincerely thank the Office of Climate Action, Sustainability, and Resiliency, City & County of Denver and Michael Salisbury for sharing the data for this research.